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A: Math. Gen.. vol. 9. No. 5 ,  1976. Printed in Great Britain. @ 1976 
1. PbP. 
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Abstract. An angular momentum operator identity which was previously established using 
matrix representations is re-derived using Feynman’s operator differential equation 
technique. 

n e  angular momentum operators play an important role in the study of many-body 
systems. For example, one needs to project good angular momentum states from a 
given intrinsic state in the study of the collective aspects of a many-nucleon system 
(Wong 1975, Ullah 197 1). The well-known BCH (Baker-Campbell-Hausdorff) (Baker 
1905, Campbell 1897, Hausdorff 1906) formulae are not very helpful in recasting the 
non-commuting angular momentum operators occurring in the projection operator 
b w d i n  1964) into a form which is suitable for use with the many-nucleon intrinsic 
wavefunction. We have shown (Ullah 1971) that matrix representations can be used to 
W t  the product of angular momentum operators, involving a chain of the step-up and 
stepdown operators, into the form of rotation operators. 

The purpose of the present work is to use an alternative way of employing 
a ~ m t i a l  equation technique proposed by Feynman (195 1) to re-derive this impor- 
tant result. The operator differential equation technique has the advantage that it 
Provides a direct approach without recourse to matrix representations for combining 
*e non-commuting quantum mechanical operators. 

In 0 2 we discuss the essential steps of this formulation. The concluding remarks are 
Presented in 0 3. 

2. Fm&tion 

‘%section, we shall make use of the differential equation technique (Feynman 195 1) 
!Orecast the product of non-commuting angular momentum operators in a form which 

utable for use with the many-nucleon intrinsic wavefunction. 
Let us consider the so-called ladder operator (Wong 1975, Ullah 1971) 

f(h) = (exp AJ-)(exp -hJ+) (1) 

“here J-, 1, are the usual step-down and step-up operators respectively and A is a 
parameter. The ladder operator enables a simple calculation of the matrix elements of 
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the angular momentum projection operator as given by Liiwdin (1964). sinceit 
rotation operator (exp -idz)(exp -ifiJy)(exp -iYJz) which can be evaluated mily in 
the basis of many-nucleon intrinsic wavefunctions, we would like to recast the ladder 
operator given by expression (1) in this form and express the Euler parmeten a, 8, 
terms of A. 

k t  us establish the differential equation satisfied by the operator f(A). Differentiat- 
ing equation (1) with respect to A, we can write 

df/dh = [J- - (exp W-)J+(exp -hJ-)lf. 

Using the operator identity 

(exp -S)O(exp S )  = o + [o, SI +&KO, SI, SI + . . . 
and the commutation relations for the operators J-, J+, we can express df/dA as 

df/dA = [A '5, - i(2 + A ' )Jy + 2hJz]f  (20) 

with the boundary condition f(0) = 1. 
It is obvious that the differential equation technique will remain simple so long as the 

commutators of the operators under consideration can be handled in a simple way asis 
the case with the angular mgmentum operators of expression (2u). 

A very general solution of differential equations like equation (24 has been given by 
Wei and Norman (1963) in the form of a product of three exponential operators as 

[~~P(~~(A)J~)I[~~P(~Z(A)J~)~[~XP(~~OJ,)I. 

Alternatively, this solution can also be obtained by using the integral representation 
of the derivative of the exponential operator as shown by Wilcox (1967). Since ON 
purpose is to recast the operator f i n  the form of a rotation operator, we do not use this 
solution but proceed instead in the following way. 

Since f(A) does not commute with the angular momentum operators, we first write 
one more differential equation for f with f (h)  appearing on the left-hand side ofthe 
square bracket. It is given by 

dfldh =f [ -A2Jx  -i(2+h2)Jy +2hJz].  (2) 

f(h) = (exp -idz)(exp -iPJy)(exp -iyJz) 

Now since the angular momentum operators obey Lie algebra, the operatorf(A)m 

(3) 

be recast in the desired form of the rotation operator as 

where a, p, y are functions of A. To determine these parameters, we differenbate 
expression (3) with respect to h and use the commutation relations for the angular 
momentum operators to give 

dP "') ( dh dh dh dA 
df - = [i (sin a s - c o s  a sin p- J, - i  cos a-+sin a sin 

-i (%+cos dh ~-3~,]f. (4) 
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expressions (24  and (4) we get the following set of differential equations for comparing 
Eder parameters a, P, y :  

sin a--cos dP 0 sin P*= -ih2 

cosa*+sina dh s i n B 3 = 2 + h 2  dh 

da -+cos PdY= 2ih. , 
dh dh 

dh dh 

As mentioned earlier the operator f in expressions (2) does not commute with the 
operators in the square bracket. Because of this non-commutativity, one can get one 
more set of equations for a, P, y if one writes the operator f on the left-hand-side of the 
quare bracket as was done earlier. These equations are given by 

dP da 2 sin y-- cos y sin p- = -ih 
dh dh 

d a  
cos y-+sin y sin p- = 2 +A’ 

dh dh 

da 
*+cos p- = 2ih. 
dh dh 

Equations (5 )  and (6) can be rewritten as 

dy da da 2 1  d -- -=ih sec ~ p ,  - -  - ~ s i n ~ ~ ) = ( 1 + h 2 - s i n 2 f p ) ” 2 .  (7a, b,c) d-dh’ dh dh 

using the boundary condition f(0) = 1, we get the following solution for the Euler 
parameters a, p, 7: 

Y = c ~ ,  exp(3a)=(1-h2)i/4, cos+p=(l-h2)’/2. @a, b, c) 

we would now like to add that if we have a more general operator of the form 
(eXPpl-)(exp -d+) we can again recast it in the form of the rotation operator (3). TO 
Qhlate the Euler parameters a, p, y as a function of p, w we shall have to replace p, w 

and use the same differential equation technique which we have outlined h? 
The solution can be written as 

condoding remarks 

shown that the differential equation technique can be used to show that the 
mahxelement identity involving angular momentum operators (Ullah 1971) is also an 
OPeratoridentity. This technique is quite general and can also be applied to recast the 
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product of non-commuting operators into some other convenient form, wkd is 
allowed by the commutator algebra of these operators. We have shown that non- 
comutativity of the operator f with the operator in the square brackets in equation 
(&)can be used to obtain additional differential equations for the Euler Parameters 
p, 7. since the differential equations €or Euler parameters are non-linear, the ad&- 
tional differentid equations are very helpful in arriving at their solutions and & 
provide a check on the final solutions. Earlier work in this field has not emphaathis 
important point. 

0 2 we considered recasting exponential functions involving linear fundons of 
fie angular momentum operators in the exponent. In the case when the exponent isnot 
linear but involves scme power of angular momentum operators, then certain trick 
may be used to bring this to a linear form and the differential equation technique may 
then be used to recast it into the desired form (Ullah and Gupta 1972). 
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