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Abstract. An angular momentum operator identity which was previously established using
matrix representations is re-derived using Feynman's operator differential equation
technique.

1, Introduction

The angular momentum operators play an important role in the study of many-body
systems. For example, one needs to project good angular momentum states from a
given intrinsic state in the study of the collective aspects of a many-nucleon system
{Wong 1975, Ullah 1971). The well-known BcH (Baker-Campbell-Hausdorff) (Baker
1903, Campbell 1897, Hausdorff 1906) formulae are not very helpful in recasting the
nn-commuting angular momentum operators occurring in the projection operator
{Liwdin 1964) into a form which is suitable for use with the many-nucleon intrinsic
wavefunction. We have shown (Ullah 1971) that matrix representations can be used to
recast the product of angular momentum operators, involving a chain of the step-up and
siep-down operators, into the form of rotation operators.

.The purpose of the present work is to use an alternative way of employing
tifferential equation technique proposed by Feynman (1951) to re-derive this impor-
tat result. The operator differential equation technique has the advantage that it
Provides a direct approach without recourse to matrix representations for combining
e non-commuting quantum mechanical operators.

In§2 we discuss the essential steps of this formulation. The concluding remarks are
Presented in § 3.

L Formulation

gihlssection, we shall make use of the differential equation technique (Feynman 1951)
. 1ast the product of non-commuting angular momentum operators in a form which
Sstitable for use with the many-nucleon intrinsic wavefunction.

Letus consider the so-called ladder operator (Wong 1975, Ullah 1971)

fA)=(exp AJ_Yexp —AJ.) (1)

» I, are the usual step-down and step-up operators respectively and A is a
“ter. The ladder operator enables a simple calculation of the matrix elements of

Vhere J_
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the angular momentum projection operator as given by Lowdin (1964), Since it is the
rotation operator (exp —iaJ,)(exp —ipJ,)(exp —iyJ.) which can be evaluated casily
the basis of many-nucleon intrinsic wavefunctions, we would like to recast the ladﬁén
operator given by expression (1) in this form and express the Euler parameters opB yi;
terms of A. : i ’
Let us establish the differential equation satisfied by the operator f()), Differentiat-
ing equation (1) with respect to A, we can write '

df/dA =[J_~(exp M) (exp —AJ)]f.
Using the operator identity
(exp —8)O(exp S)= O +[0, S]+3I0, S1, S1+. ..
| and the commutation relations for the operators J_, J., we can express df/dA as
df/dA =[A%J, —i(2+ AT, + 20T, If 29

with the boundary condition f(0) = 1.

Itis obvious that the differential equation technique will remain simple so long as the
commutators of the operators under consideration can be handled in a simple way asis
the case with the angular momentum operators of expression (24).

A very general solution of differential equations like equation (2a) has been givenby
Wei and Norman (1963) in the form of a product of three exponential operators as

lexp(g:(A)J) exp(ga(A)J;) exp(gs(A)J,)].

Alternatively, this solution can also be obtained by using the integral representation
of the derivative of the exponential operator as shown by Wilcox (1967). Since our
purpose is to recast the operator f in the form of a rotation operator, we do not use this
solution but proceed instead in the following way. )

Since f(A) does not commute with the angular momentum operators, we first write
one more differential equation for f with f(A) appearing on the left-hand side of the
square bracket. It is given by

df/dx = fl-A%T, —i(2+AJ, +20J, ] @b

Now since the angular momentum operators obey Lie algebra, the operator f(A)can
be recast in the desired form of the rotation operator as

F0) = (exp —ieT,)exp —iB,)(exp —ivl.) g

. . ; jate
where «, B8, ¥ are functions of A. To determine these parameters, W differentr

- ) : - Fi
expression (3) with respect to A and use the commutation relations for the an
momentum operators to give

Pi_[-(- dg , dv) ( B . gy)J
- i SmadA cosasmﬁd/\ Jo—i cosadA+smasdeA v

(2 4c0s522) ]
1<d/\+cosBdA L 1f
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Comparing expressions (2a) and (4) we get the following set of differential equations for
ihe Euler parameters a, B, y:

. dﬁ_ . d’)’___- 2

sinazy €Os o Sin ‘B_d/\ =—jA (5a)
9B L in o sin g ¥=2+422

cos adA+51na31n Bd/\—2+)t (5b)

do dy_,.,

a—+cos B I 2iA. (5¢)

As mentioned earlier the operator f in expressions (2) does not commute with the
operators in the square bracket. Because of this non-commutativity, one can get one
more set of equations for a, B, v if one writes the operator f on the left-hand-side of the
square bracket as was done earlier. These equations are given by

sin ygxﬁ—cos v sin BS—; =—iA? (6a)
cos y%+sin-ysin B%=2+A2 (6b)
g—;—’ +cos B%\Z =2iA. (6¢c)
Equations (5) and (6) can be rewritten as
T8 Lpedis o Lnip=aea-t B0 (abo)

Using the boundary condition f(0)=1, we get the following solution for the Euler
parameters a, B, v:

Y=e,  expBia)=(1-A%)"", cos 38 =(1-A%)"2 (8a, b, ¢)

We would now like to add that if we have a more general operator of the form
exp pJ_)(exp —wJ.) we can again recast it in the form of the rotation operator (3). To
weulate the Euler parameters o, B, y as a function of p, w we shall have to replace p, @
%o, Ao and use the same differential equation technique which we have outlined
tove. The solution can be written as

expia) = [(p/w)(1 - pa)]"*,
expGivy) = [(w/p)(1 —pw)]*, (9a, b, c)

cos %B - (l—pQ))l/Z.

3' C"“d'lding remarks

::k{a% shown that the differential equation technique can be used to show that the
trix eh’:ment identity involving angular momentum operators (Ullah 1971) is also an
foridentity. This technique is quite general and can also be applied to recast the
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product of non-commuting operators into some other convenient form, which i
allowed by the commutator algebra of these operators. We have shown that no:
commutativity of the operator f with the operator in the square brackets in €quation
(2a)can be used to obtain additional differential equations for the Euler parameter

B, v. Since the differential equations for Euler parameters are non-linear, the addci!:
tional differential equations are very helpful in arriving at their solutions and a5
provide a check on the final solutions. Earlier work in this field has not emphasized this

- important point.

In § 2 we considered recasting exponential functions involving linear functions of
the angular momentum operators in the exponent. In the case when the exponentis ot
linear but involves scme power of angular momentum operators, then certain tricks
may be used to bring this to a linear form and the differential equation technique may
then be used to recast it into the desired form (Ullah and Gupta 1972).
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